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Abstract. Since the introduction of the side-channel and fault injection
analysis late in the 90’s, implementing cryptographic standards on em-
bedded devices has become a difficult challenge. Developers were obliged
to add new appropriate countermeasures into their code. To prevent
those separate threats, they often implemented countermeasures sepa-
rately. The side-channel dedicated countermeasures were added to the
algorithm when on the other hand specific protections against fault in-
jections, like computation verifications, were implemented. However in
2007 Amiel et al. demonstrated that a single fault injection combined
with simple side-channel analysis can defeat such a classical implemen-
tation. Then it became obvious that side-channel and fault countermea-
sures had to be designed together. In that vein Schmidt et al. published
at Latincrypt 2010 an efficient exponentiation algorithm supposedly re-
sistant against this combined attack category. Despite the clever design
of these algorithms, we present here two new attacks that can defeat
its security. Our first attack is a single fault injection scheme requiring
only few faulted ciphertexts. The second one requires the combination
of a single fault injection with a differential treatment. We also propose
a more secure version of this algorithm that thwarts our attacks.

Keywords: Embedded Exponentiation, Side-channel Analysis, Fault Analysis,
Combined Attack, RSA, ECC.

1 Introduction

For years the development of secure embedded products, such as smartcards,
has become more and more challenging for designers. In the middle of the 90’s
the security of the smartcards mainly consists in measuring the strength of the
hardware mechanisms which protect the product from invasive attacks. But with
the introduction of two new categories of attacks the task has become more
difficult.

Side-Channel Analysis (SCA), also referred as Passive Attacks, is introduced
in 1996 by Kocher [13]. He demonstrates that an embedded device supporting
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cryptographic calculations can reveal information on secrets manipulated when
analyzing the physical interactions between the integrated circuit and its en-
vironment. An attacker can then observe the power consumption trace of the
device [15] or its electromagnetic emanations [8]. SCA regroups two different
techniques: the Simple Side-Channel Analysis (SSCA) and the Differential Side-
Channel Analysis (DSCA). SSCA exploits only a single trace measurement of
the targeted algorithm execution to recover the secret values. DSCA requires
many execution of the targeted algorithm and applies statistical analysis on the
corresponding side-channel traces to successfully validate guesses done on the
secret.

Fault Analysis (FA), or Active Attacks, consists in perturbing the algorithm
process to obtain an abnormal behavior. It can be done by injecting power
glitches on the circuit pad or by precise laser light emissions on the device surface
(front side or back side). An erroneous computation result is then obtained
which can be exploited to recover entirely or partially the secrets. Different
active attacks exist: the Differential Fault Analysis (DFA), the Ineffective Fault
Analysis (IFA), the Collision Fault Analysis (CFA).

Most of the cryptosystems are nowadays threatened by both techniques like
RSA [18] and ECC [12, 16] embedded implementations. We focus our study in
this paper on those embedded implementations. In the last decade many coun-
termeasures have been presented to design side-channel resistant algorithm on
the first hand and fault injection countermeasures on the other hand. For years
implementing those countermeasures separately has never been an issue. But in
1997 Amiel et al. [2] present a combined passive and active attack on an RSA
implementation which is considered at this time resistant to both SCA and FA
techniques separately. In 2010 Schmidt et al. [20] propose combined-attack re-
sistant algorithms to compute exponentiation and scalar multiplication. Their
implementations cleverly include tricks to thwart the Amiel et al. attack.

However in this paper we present new attacks on their algorithms. The first
technique we introduce is a first order fault attack which can recover the whole
secret exponent with a practical number of faulted results. Our fault injections
benefit from a flaw in the infective computation design of the Schmidt et al.
algorithms. The second threat on these algorithms is an attack combining fault
injection with differential analysis on many executions. This analysis targets
their use of a specific exponentiation technique, i.e. left-to-right multiply always,
in order to thwart its supposedly resistance against combined attacks.

Roadmap. Section 2 reminds the reader the necessary background on side-
channel and fault attacks, as well as on combined attack resistant implemen-
tation in order to understand the attacks presented in this paper. In Section 3
we introduce the first order fault attacks which can defeat the combined expo-
nentiation from Schmidt et al. on a simplified and the complete versions of this
algorithm. New combined attacks are presented in Section 4. Section 5 propose
an improved version of the Schmidt et al. algorithm which counterfeit the new
attacks presented. We conclude in Section 6.



2 Background

We present in this section the combined attack principle and the previous pub-
lications on the subject. We also remind the Schmidt et al. algorithms we are
attacking in the rest of this paper.

2.1 Combined Attacks on Asymmetric Cryptosystems

Since the publication from Amiel et al., combined attacks have been more and
more investigated. This technique exploits leakage information from both a fault
analysis (FA) and a classical side-channel attack like SSCA or DSCA. Both
symmetric and asymmetric cryptosystems have been shown vulnerable to it. In
this paragraph we briefly review the combined attacks proposed in the literature.

The first combined attack publication from Amiel et al. [2] combines a fault
attack with an SSCA in order to break a modular exponentiation that is suppos-
edly secure against DFA and SSCA. The authors attack a left-to-right multiply
always algorithm implementing the atomicity principle from Chevallier-Mames
et al. [4]. Additionally the message and the secret exponent values were ran-
domized to counterfeit DSCA. The first step of the attack consists in injecting
a fault in one of the registers (or in the RAM) before (or during) the beginning
of the exponentiation. The fault aims at creating a modified message value that
will leak in SSCA each time it is manipulated. For instance a low Hamming
weight value has been introduced into a part of the message, or the message
pointer has been modified to include an erased area of the RAM. This message
modification renders the message manipulations visible into a side-channel trace.
It becomes then possible to distinguish a squaring operation from a multiplica-
tion using SSCA as described in [5]. Hence, the FA protection that is present
at the end of the algorithm cannot prevent the SSCA leakage that has already
occurred during the computation. This attack is very efficient as a single fault
applied successfully to the calculation execution will make the SSCA efficient.
The principle of the attack of Amiel et al. seems to be applicable to any clas-
sic left-to-right atomic algorithm, either exponentiation or scalar multiplication.
In [2], the authors propose a countermeasure called Detect and Derive based on
the principle of infective computation. However, it was shown vulnerable in [20].
In this paper, Schmidt et al. introduce a new resistant exponentiation algorithm,
as well as a scalar multiplication algorithm, also based on infective computation.
The idea is to be able to detect a fault as soon as it happens and corrupt the
data if necessary so that no relevant information is leaking anymore.

More recently, in [7], Fan et al. study the case of combined attacks spe-
cially targeting elliptic curve scalar multiplication. Using the properties of ellip-
tic curves, they develop a powerful attack that can defeat atomic and regular
algorithms. In order to perform the attack, one needs to choose a particular in-
put point of the scalar multiplication. By injecting a fault after the initial point
verification, the attacker is then able to obtain a point with a small order. Dur-
ing the scalar multiplication, computations with the faulted point will end up on



the infinity point which is particularly visible by SSCA in most implementations.
The attacker is then able to find information on the secret scalar.

2.2 Schmidt et al. Resistant Algorithm

We remind in the following the combined attack resistant implementation from
Schmidt et al. [20] to give the reader the necessary notions to understand our
attacks. We principally consider the exponentiation algorithm in this paper, how-
ever most of our attack paths can be directly applied to the scalar multiplication
counterpart.

Fault model considered. In their paper [20], Schmidt et al. deal with the
three following fault attack models. The attacker is able with fault injection to:

• randomize data to an unknown value,
• reset data to all zeros or all ones or any given fix value,
• modify opcodes, i.e. skip instructions, break loops, etc.

The authors only take into consideration first order fault injections, i.e. an
attacker injects only one fault per execution of the algorithm. They present two
algorithms protected against combined attacks under these fault models. Their
first algorithm (Alg. 1) [20, Alg. 3] is a protected exponentiation, and their
second one [20, Alg. 4] is a protected scalar multiplication. Both algorithms are
based on the same principles of countermeasures.

We remind the reader through Algorithm 1 the detailed combined attack
resistant algorithm for exponentiation from Schmidt et al. [20].

Notations. In the rest of the paper, we use the following notations:

• let W be the block length that is generally the size of a processor word, i.e.
W = 8 (resp. W = 16 or W = 32) for an 8-bit (resp. for a 16-bit or a 32-bit)
architecture,

• let d be the t-bit secret exponent and d = (dt−1, dt−2, . . . d1, d0)2, with di
the i-th bit of d, its binary representation,

• let d̄ = (d̄t+λ−1, d̄t+λ−2, . . . d̄1, d̄0)2 be the blinded exponent,
• let d̃ be the blinded exponent encoded using the function ψα detailed below,
• let d̂ be the exponent decoded using ψ−1

α ,
• let d(j) be the j-th W -bit word of d.

The exponent is protected through an encoding function ψα : Zr2×Zr2 → Zr2
which is an invertible function defined as:

ψα(d(j)) = (α+N)−1 · d(j) mod r2,

ψ−1
α (d̃(j)) = (α+N) · d̃(j) mod r2,



Algorithm 1 Schmidt et al. [20, Alg. 3] left-to-right exponentiation.

Input: d = (dt−1, . . . , d0)2,m ∈ ZN , N and block length W .
Output: md mod N

1: r1 ← random(1, 2λ − 1)
2: r2 ← random(1, 2λ − 1)
3: i← (r−1

2 mod N) · r2
4: R0 ← i · 1 mod Nr2
5: R1 ← i ·m mod Nr2
6: d̄← d+ r1 · ϕ(N)
7: [d̃(l−1), . . . , d̃(0)]← [ψ0(d̄(l−1)), . . . , ψ0(d̄(0))]
8: k ← 0
9: j ← bitlength(d̃)− 1

10: while j ≥ 0 do
11: R0 ← R0 ·Rk mod Nr2
12: if (R0 = 0) or (R1 = 0) then
13: [d̃(l−1), . . . , d̃(0)]← [1, . . . , 1]
14: end if
15: d̂← ψ−1

(R0+R1 mod r2)
(d̃(bj/Wc))

16: k ← k ⊕ bit(d̂, j mod W )
17: j ← j − ¬k
18: end while
19: c← R0 mod N

return c

with α ∈ Zr2 , N the modulus and r2 a small random value such that r2 > 2W .

In the next section, we introduce single fault attacks on a simplified ver-
sion (without exponent/scalar blinding) of Algorithm 1 and on the complete
Algorithm 1.

3 Fault Attack on Schmidt et al. Algorithms

We show in this section that a classical single fault attack can still be applied
to the exponentiation algorithm proposed by Schmidt et al. [20, Alg. 3]. We
consider in this section fault attacks based on the modification of an opcode,
i.e. skip of instruction. We first propose a fault attack on a simplified version of
Alg. 1 where the blinding of the exponent is not present (Line 6). Then, based
on the same fault attack principle, we propose an attack on the complete version
of Alg. 1.

3.1 Fault Attack on a Simplified Algorithm

As we consider no exponent blinding in this section, we have that d̄ = d, hence
the encoded exponent d̃(k) = ψ0(d(k)) for 0 ≤ k ≤ l − 1 where l is the length of
d in W -bit words.



To prevent their implementation from the combined attack presented in [2],
the authors introduced at Line 12 of the algorithm an infective operation. The
purpose is to corrupt the secret exponent when a fault injection is detected
in order to cancel the side-channel leakage that could reveal the secret. More
precisely the purpose of the test Line 12 of Alg. 1 is to corrupt the exponent in
case one of the registers R0 or R1 was erased by fault which could leak simple
side-channel information. Hence, the exponentiation would continue its course
but using false exponent bits. Schmidt et al. choose to affect the value 1 to all
words of the encoded exponent d̃. The decoding of a word of exponent performed
Line 15, assuming no faults in registers R0 or R1, computes for the k-th word of
the exponent:

d̂ = ψ−1
0 (d̃(k)) = N · ψ0(d(k)) mod r2 = d(k) mod r2.

It is very important for our attacks to notice that if the exponent has been
corrupted in Line 13, all the decoded W -bit words of exponent until the end of
the exponentiation are equal to the value:

d̂ = ψ−1
0 (1) = N · 1 mod r2 = N mod r2.

Moreover, we note from Line 16 that only the W least significant bits of d̂
are considered for the exponentiation. It signifies that from the moment a single
fault is injected to skip the test at Line 12, all the remaining W -bit words d̂(i)

being used for the rest of the exponentiation are equal to this same and unique
value N mod r2.

We introduce for our analysis two additional notations. Let H be the value
(N mod r2) mod 2W and t̃ = l ·W be the bit length of d̃.

Now consider that an attacker already knows the v (can be zero) first bits of
the exponent and skips Line 12 by fault injection u bits after in the loop of the
algorithm. The algorithm outputs the faulted result Šu that used the following
exponent:

ďu =

t̃−1∑
i=t̃−v

2i · d̃i︸ ︷︷ ︸
known part of the exponent

+

t̃−v−1∑
i=t̃−v−u

2i · d̃i +

t̃−v−u−1∑
i=0

2i ·H(i mod W ). (1)

By doing a guess on the next u unknown bits of d and another guess on
the value of H, an attacker can compute the guessed result of the exponenti-
ation, denoted Sg(u,H). Then by comparing this value Sg(u,H) with Šu, he
can decide if his guesses are correct or not. After an exhaustive calculation for
all possible values, when Sg(u,H) = Šu the attacker recovers the right values
(dt−v−1, . . . , dt−v−u) and H.



Complexity. The computational complexity C of our fault attack to recover
the exponent is:

C = O
(

2(u+W ) · t̃
u

)
exponentiations.

The number of faulty signatures F to collect is:

F = O
(
t̃

u

)
.

We have validated our attack on a standard PC using the GMP library3 for
different RSA keys (values and bit-length) with success.

Table 1 gives examples of computational complexity of our attack for u = 1
and different values of W and t.

W — Bit-length t 512 bits 1024 bits 2048 bits

8 C = 218 C = 219 C = 220

16 C = 226 C = 227 C = 228

32 C = 242 C = 243 C = 244

Table 1. Example of computational complexities for u = 1 to recover the exponent on
the simplified algorithm.

This attack also applies to the simplified scalar multiplication algorithm of
Schmidt et al. [20, Alg. 4], i.e. with no scalar blinding. However this analysis only
works if the attacker can retrieve the exponent u bits at a time using different
faulty results. Hence in the presence of exponent blinding, it cannot be applied
directly. We present in the following an adaptation of the attack to the blinded
exponentiation algorithm.

3.2 Fault Attack on the Complete Version of the Algorithm

Based on the attack presented previously, we propose in this section a variation
in order to attack Alg. 1 considering the exponent blinding countermeasure. As
previously observed by Berzati et al. in [3], the blinding using ϕ(N) does not
mask homogeneously the exponent. We propose here an attack which exploits
this flaw. We do not include the processing of the exponent through the encoding
function ψ for easier notation. As seen in the previous section, the output size of
the encoding function, i.e. the size of the random r2, has no effect on the attack
because the algorithm only considers bits modulo W .

3 The GNU Multiple Precision Arithmetic Library, available at http://gmplib.org/



Let d̄ be the blinded exponent such that d̄ = d + r1ϕ(N) with r1 a λ-bit

random. Let d̄ =
∑t+λ−1
i=0 2i · d̄i be its binary decomposition. We can also write

it as:

d̄ =

t+λ−1∑
i=t

2i · (r1N)i +

t−1∑
i=t/2+λ

2i · (d+ r1N)i +

t/2+λ−1∑
i=0

2i · (d+ r1ϕ(N))i. (2)

We observe that the least significant bits of the secret exponent d are ran-
domized with the full mask r1ϕ(N). On the other hand, the most significant
(half upper) bits of d are only masked with r1N . The attack consists in finding
d from its most significant bits to its least significant ones.

We note Šu the faulty result of an exponentiation where the test Line 12 of
Alg. 1 has been skipped by fault after the u-th unknown bit of the exponent
has been processed. The faulty exponent ďu corresponding to Šu is detailed in
Eq. (1). We consider that the attacker has already retrieved the v most significant
bits of d.

Retrieving the MSB part of d. We first consider a fault injected after the
u-th unknown bit within the range of bits of d being [(t/2 + λ), t]. We consider
then:

d̄ =

t+λ−1∑
i=t

2
i · (r1N)i +

t−1∑
i=t−u

2
i · (d+ r1N)i +

t−u−1∑
i=t/2+λ

2
i · (d+ r1N)i +

t/2+λ−1∑
i=0

2
i · (d+ r1ϕ(N))i.

(3)

Let d̄[u] =
∑t+λ−1
i=t−u 2i · d̄i and d̄<u> =

∑t−u−1
i=0 2i · d̄i. The faulty exponent

ďu of the result Šu can be approximated as ďu ≈ d̄[u] + d̄<u>, not considering
the carry propagation.

Once the fault has been injected, as we observed previously, the least sig-
nificant part of the encoded exponent is fixed at 1 in Line 13 of Alg. 1 as an
infective calculation countermeasure. Hence, we have that after the fault at the
u-th bit, d̄<u> =

∑t−u−1
i=0 2i ·H(i mod W ) with H = (N mod r2) mod 2W .

In order to find d̄<u>, the attacker only needs to guess W bits of H. We note
dknown =

∑t−1
i=t−v 2i · di the most significant v bits of d already retrieved by the

attacker.
From Eq. (2) and (3), the most significant part of the exponent d̄[u] can be

approximated as:

d̄[u] ≈
t+λ−1∑
i=t−u

2i · (d+ r1N)i

≈ dknown +

t−v−1∑
i=t−v−u

2i · di +

t+λ−1∑
i=t−v−u

2i · (r1N)i + carry



where carry is the possible carry bit resulting from the addition between the u
first bits of r1 and N . In order to find the value of d̄[u], the attacker needs to
guess u bits of d and λ bits of r1. The possible carry bit only gives an uncertainty
on the parity of the guessed value of d. By guessing 2(u+W+λ) bits, the attacker
can construct a guess of the full exponent ďu. He can then validate his guess by
checking if the following relation is verified:

Šu
?
= md̄[u]+d̄<u> mod N. (4)

Retrieving the LSB part of d. Once we have recovered the MSB part of d,
we now consider a fault injected after the u-th unknown bit within the range of
bits of d being [0, (t/2 + λ)]. Contrary to the MSB case, the bits of d will not
be guessable directly as the full mask r1ϕ(N) is now applied.

We consider then:

d̄ =

t+λ−1∑
i=t/2+λ

2
i · (d+ r1N)i +

t/2+λ−1∑
i=t/2+λ−u

2
i · (d+ r1ϕ(N))i +

t/2+λ−u−1∑
i=0

2
i · (d+ r1ϕ(N))i. (5)

The least significant part of the faulted exponent is still equal to d̄<u> =∑t/2+λ−u−1
i=0 2i ·H(i mod W ). As previously, in order to find d̄<u>, the attacker

only needs to guess W bits of H.
We can write the most significant part of the exponent using Eq. (2) as:

d̄[u] =

t+λ−1∑
i=t/2+λ−u

2i · (d+ r1ϕ(N))i

=

t+λ−1∑
i=t/2+λ−u

2i · (d+ r1N − r1(p+ q − 1))i

≈ dknown +

t/2+λ−v−1∑
i=t/2+λ−v−u

2i · δi +

t+λ−1∑
i=t/2+λ−v−u

2i · (r1N)i + carry

where δi = (d − r1(p + q − 1))i and carry is the possible carry due to the
addition of the u bits of r1N with (d− r1(p+ q − 1)).

As previously, the possible carry bit is not taken into account in the analysis
as it only affects the parity of the final guess and is easily checkable. In order to
find the value of ďu, the attacker needs to guess 2(u+W+λ) bits: u bits of δ, λ bits
of r1 and W bits of H. The attacker can then construct a guess of the full expo-

nent and validate this guess by checking if Šu
?
= md̄[u]+d̄<u> mod N . Contrarily

to the MSB case we described previously, recovered bits are not bits of d but u
bits of δi. This can be solved by using many faulted executions instead of one.



Indeed as the values of d and (p + q − 1) are fixed between different exponen-
tiations, by faulting at the same time u, the attacker can obtain an additional
guess for δ with a different r1. With two or more faulted exponentiations, he will
be able to determine the u bits of d and the u bits of (p+ q− 1). The validation
of the guesses are made, similarly to the MSB case, by comparing the faulted
result of exponentiation to the exponentiation with our entire guessed exponent
(see Eq. (4)).

Complexity. The computational complexity C of our fault attack to recover
the exponent is:

C = O
(

2(u+W+λ) · t
u

)
exponentiations.

The number of faulty signatures F to collect is:

F = O
(
t

u

)
.

We can note that our fault attack does not require non-faulted results of ex-
ponentiations. The complexity of our attack is not impacted by the size of r2

used in the encoding function ψ but by the size of the window W as only W
bits of the output of the encoding are used to perform the exponentiation. This
undesirable effect of Alg. 1 implies that the smaller processor words, the easier
this fault attack is to perform. As previously, this attack has been validated on
a standard PC using the GMP library.

We have presented first order (single) fault injections that defeat the com-
bined resistant implementation with few faulted executions and a reasonable
complexity that render this attack practical. Our attacks use a flaw in the design
of the infective computation in Schmidt et al. algorithms. In the next section we
discuss the resistance of Algorithm 1 against combined attacks and particularly
with regards to the combined attacks we introduce.

4 Combined Attacks on Schmidt et al. Algorithms

Although the algorithms proposed by Schmidt et al. [20] are supposedly resistant
to the combined attack published by Amiel et al. [2], we explain in the following
that Alg. 1 can be threatened by more advanced combined attacks.

Combining Fault Injection with Differential Analysis. We consider the
exponentiation algorithm (Alg. 1) for the description of this attack, however it
directly applies to the scalar multiplication algorithm [20, Alg. 4]. Note that the
internal registers R0 and R1 are randomized at the beginning of the algorithm
with a random idempotent element i (Line 6 Alg. 1). Hence, we can only use



attacks that consider unknown plaintexts as the randomization by i cannot be
easily removed.

A combined attack that uses an instruction skip fault combined with one of
the differential attack using unknown plaintext can be mounted on Schmidt et al.
algorithms. If the attacker can skip Line 6 in Alg. 1 by fault injection, then the
exponentiation is performed without exponent blinding, i.e. d̄ = d. In case a bit
of d is dj = 0, the multiplication Line 11 becomes R0 ·R0, whereas if a bit equals
1, it computes R0 ·R1. More precisely, if dj = 0 the output of the multiplication
will have the expected Hamming weight of a squaring which is distinct from
the expected Hamming weight of a multiplication output as demonstrated in [1,
22]. Hence the attack of Amiel et al. [1] can be applied. However it requires few
thousand curves in order to distinguish correctly squaring from multiplication
operations. The fault attack on Line 6 then needs to be repeatable which is
demonstrated realistic from recent fault injection techniques [17, 6]. Note that
the fault repeatability does not need to be perfect as failed faults are considered
as noise in the differential analysis treatment. Hence, it only affects the number
of curves necessary to recover the secret.

Combining Fault Injection with Template Analysis. A template attack4

using the same principle as Amiel et al. was proposed by Hanley et al. [10].
With very few curves, the attacker can recover the full exponent in a template
matching phase. If the exponent blinding of Line 6 is removed, this attack can
also be applied with less faults and less traces compared to the previous one.
Note that without the fault injection, this template attack can be mounted using
only one curve. Hence, the recovery of the exponent will most certainly not be
complete. Depending on the size of the blinding factor r1 (Line 1), the size of
the modulus N and the success rate of the template attack, the methodology of
Schindler and Itoh [19] can be applied to recover the full exponent.

5 Improved Combined Attack Resistant Algorithms

We propose in this section improvements on the exponentiation algorithm (Alg. 1)
to prevent the attacks presented previously. Our proposed improvements also ap-
plies to the scalar multiplication variant.

The fault attack presented in Section 3 exploits a skip of instruction on the
conditional test in Line 12 where the infective calculation replaced the entire en-
coded exponent by 1. A simple and efficient countermeasure consists in replacing
this fixed value by random values for each words of the exponent. Another pro-
tection could be offered through the classical DFA countermeasure consisting in
verifying the calculation with the public exponent e when possible.

4 As the plaintext can be unknown to construct these templates, an open device is
not mandatory contrary to the usual definition of a template attack. The attacker
only needs to record the power consumption of multiplications and squarings with
random inputs.



Algorithm 2 Improved Schmidt et al. left-to-right exponentiation.

Input: d = (dt−1, . . . , d0)2,m ∈ ZN , N and block length W .
Output: md mod N

1: r1 ← random(1, 2λ − 1)
2: r2 ← random(1, 2λ − 1)
3: i← (r−1

2 mod N) · r2
4: R0 ← i · 1 mod Nr2
5: R1 ← i ·m mod Nr2
6: d̄← d+ r1 · ϕ(N) (optional)

7: [d̃(l−1), . . . , d̃(0)]← [ψ0(d̄(l−1)), . . . , ψ0(d̄(0))]
8: for i = 0 to l − 1 do
9: wi ← random(1, 2W − 1)

10: end for
11: k ← 0
12: j ← bitlength(d̃)− 1
13: while j ≥ 0 do
14: r3 ← random(1, 2λ − 1)
15: R2 ← Rk + r3 ·N mod Nr2
16: R0 ← R0 ·R2 mod Nr2
17: if (R0 = 0) or (R1 = 0) then
18: [d̃(l−1), . . . , d̃(0)]← [wl−1, . . . , w0]
19: end if
20: d̂← ψ−1

(R0+R1 mod r2)
(d̃(bj/Wc))

21: k ← k ⊕ bit(d̂, j mod W )
22: j ← j − ¬k
23: end while
24: c← R0 mod N

return c

To prevent the combined attacks we introduced, it becomes necessary to
prevent template and differential side-channel techniques. A possible fix consists
in randomizing the internal registers R0 and R1 before the multiplication so that
even if we have to compute R0 · R0 the representation of the two operands will
be different. The Line 11 of Alg. 1 can be replaced by the following:

1: r3 ← random(1, 2λ − 1)
2: R2 ← Rk + r3 ·N mod Nr2

3: R0 ← R0 ·R2 mod Nr2

This modification adds to the cost of Alg. 1 one more register R2, one modular
multiplication with addition and the selection of a random value r3 at each
turn of the loop. Even if the exponent blinding is removed by fault, none of
the attacks presented before can be applied now as multiplication and squaring
operations are no more distinguishable. A similar modification can be applied to
the scalar multiplication algorithm [20, Alg. 4] but at a higher cost. One needs to
randomize each coordinates of the elliptic curve point which means, in the case
of classical projective coordinates, an overhead of 3 modular multiplications,



3 random values and a point buffer. Moreover, this technique might not be
sufficient on most normalized curves, i.e. NIST curves, as their modulus have
very particular forms that can still allow for side-channel leakage on randomized
coordinates. A more costly alternative solution consists in using a randomized
multi-precision multiplication as proposed in [14] and [21, Sec. 2.7].

It is important also to notice that in practice the public exponent and the
value ϕ(N) can be unknown when computing an exponentiation. In that case,
the exponent cannot be blinded and the calculation verified. Although there
are alternative solutions, as for instance those proposed by Joye in [11], it only
applies to particular cases. Hence it could be sometimes impossible to apply the
blinding on the exponent. However our improved Algorithm 2 is resistant to
combined attacks even when those values are unknown.

To the best of our knowledge, the only other exponentiation algorithm resis-
tant against combined attacks is the algorithm proposed by Giraud [9] based on
the Montgomery ladder. However it only protects from a corruption of the data
registers, the integrity of the exponent is not assured contrary to Schmidt et al.
algorithm.

6 Conclusion

We have presented in this paper two new attacks which threatens the combined
attack resistant implementations Schmidt et al. published in [20]. Our first tech-
nique is a single fault injection technique which can recover with few faulted
ciphertexts the secret exponent. This attack was possible due to a flaw in the
infective computation countermeasure proposed by the original authors. The sec-
ond method combines fault injection with differential analysis to reach the same
objective. Introducing those new vulnerabilities lead us to propose an improved
version of this algorithm which offer better protection against the different at-
tacks based on side channel analysis and fault injection techniques.
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